Involvement of Reactive Oxygen Species in Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes
Keywords:
Apoptosis, Mammalian oocytes, Meiotic cell cycle arrest, Oxidative stress, Reactive oxygen species, Redox signalingAbstract
The mammalian ovary is a metabolically active organ and generates a large amount of reactive oxygen species (ROS) during final stages of folliculogenesis. ROS modulate physiological arrest (i.e., diplotene arrest) in follicular oocytes as well as metaphase-II (M-II) arrest in ovulated oocytes in most of the mammalian species. A moderate increase in the level of ROS could be beneficial for meiotic resumption from diplotene and M-II arrest in oocytes. The increased production of ROS, decreased antioxidant system, drug treatment, pathological conditions, stress, and several other factors may lead to accumulation of ROS in the ovary. Increased levels of ROS may generate oxidative stress (OS), which could induce meiotic cell cycle arrest in oocytes. OS triggers granulosa cell apoptosis and thereby reduces the transfer of nutrients and survival factors to the oocytes, leading to apoptosis. In vitro culture conditions, reduced survival factors, and destabilized maturation promoting factor (MPF) may generate ROS and thereby OS in follicular and ovulated oocytes. OS induces apoptosis in diplotene- and M-II-arrested oocytes through mitochondria-mediated pathway. The deterioration in oocyte quality resulting from ROS-mediated apoptosis may negatively impact the outcome of assisted reproductive technology (ART) in several mammalian species, including humans.
Downloads
Published
How to Cite
Issue
Section
License
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published; that it is not being considered elsewhere for publication; that the author(s) agrees to assign copyright to the Journal upon acceptance for publication in the Journal, and if accepted for publication, it will be published in the digital format (PDF) and/or in print and it will not be published elsewhere in the same form, for commercial purposes, in any language, without the consent of the Publisher.